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ABSTRACT: Using a 3-km regional ensemble prediction system (EPS), this study tested a three-dimensional (3D) rescaling
mask for initial condition (IC) perturbation. Whether the 3D mask-based EPS improves ensemble forecasts over current
two-dimensional (2D) mask-based EPS has been evaluated in three aspects: ensemble mean, spread, and probability.
The forecasts of wind, temperature, geopotential height, sea level pressure, and precipitation were examined for a
summer month (1–28 July 2018) and a winter month (1–27 February 2019) over a region in North China. The EPS was
run twice per day (initiated at 0000 and 1200 UTC) to 36 h in forecast length, providing 56 warm-season forecast cases
and 54 cold-season cases for verification. The warm and cold seasons are verified separately for comparison. The study
found the following: 1) The vertical profile of IC perturbation becomes closer to that of analysis uncertainty with the
3D rescaling mask. 2) Ensemble performance is significantly improved in all three aspects. The biggest improvement
is in the ensemble spread, followed by the probabilistic forecast, and the least improvement is in the ensemble mean
forecast. Larger improvements are seen in the warm season than in the cold season. 3) More improvement is in the
shorter time range (,24 h) than in the longer range. 4) Surface and lower-level variables are improved more than upper-
level ones. 5) The underlying mechanism for the improvement has been investigated. Convective instability is found to be
responsible for the spread increment and, thus, overall ensemble forecast improvement. Therefore, using a 3D rescaling
mask is recommended for an EPS to increase its utility especially for shorter time range and surface weather elements.

SIGNIFICANT STATEMENT: A weather prediction model is a complex system that consists of nonlinear differen-
tial equations. Small errors in either its inputs or model itself will grow with time during model integration, which will
contaminate a forecast. To quantify such contamination (“uncertainty”) of a forecast, the ensemble forecasting tech-
nique is used. An ensemble of forecasts is a multiple of model runs at the same time but with slightly “perturbed” in-
puts or model versions. These small perturbations are supposed to represent true “uncertainty” in inputs or model
representation. This study proposed a technique that makes a perturbation’s vertical structure more resemble real un-
certainty (intrinsic error) in input data and confirmed that it can significantly improve ensemble forecast quality espe-
cially for a shorter time range and lower-level weather elements. It is found that convective instability is responsible for
the improvement.
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1. Introduction

A numerical weather prediction (NWP) model is only an
approximation of real atmosphere and contains unavoidable
errors in various components like initial conditions (ICs) and

model physics. These small errors will nonlinearly grow with
time during model integration to contaminate a forecast due
to chaotic nature of models (Lorenz 1963; Epstein 1969; Leith
1974). Therefore, it is necessary to quantify predictability or
uncertainty associated with a model forecast. Since ensemble
forecasting is a model-based dynamical approach to quantify
forecast uncertainty, an ensemble prediction system (EPS)
has now become a standard modeling system at major numer-
ical weather prediction centers in the world (e.g., Buizza et al.
2018).

A key technical component for an EPS is to perturb ICs.
There are many existing IC perturbation methods (see the
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review of those methods in Du et al. 2018). Some are random
perturbations (e.g., Monte Carlo method), some are just a collec-
tion of multiple existing analyses (e.g., multi-analysis approach),
some are focusing on error structure in analysis (e.g., breeding
method), some are mathematically targeting spread growth at a
future time (e.g., singular vector), some are simulating observa-
tional errors (e.g., ETKF). Du et al. (2018) has described each
of the methods in detail and discussed their advantages and
shortages. Based on our own and other’s experiences in de-
veloping EPSs, three basic scientific principles are behind
all those IC-perturbation generation schemes (e.g., Lacarra
and Talagrand 1988; Du 2002; Du et al. 2018). One is the
representativeness that a perturbation should represent the
true uncertainty of an IC by keeping perturbation size simi-
lar to analysis uncertainty (intrinsic error in an analysis).
Another is the growing structure that perturbation’s spatial
structure should contain atmospheric growing or unstable
modes (e.g., baroclinic and convective instabilities) so that a
perturbation will grow when a model integrates with time.
The third is the independence that orthogonality of pertur-
bations among ensemble members needs to be maximized
so that perturbations can grow independently into different
directions during model integration to fully span forecast
uncertainty space. Given a finite ensemble size, the number
of ensemble member is normally much smaller than the mod-
el’s degree of freedom. Therefore, the second and third princi-
ples are necessary for a limited-size ensemble to effectively
encompass all possible scenarios of a future atmospheric state.
Horizontal perturbation structure is taken care of by well-
designed perturbation schemes. For example, a blending of en-
semble transform Kalman filter (ETKF; Wang and Bishop
2003) and bred vector (BV; Toth and Kalnay 1997) is used as
a base IC perturbation scheme to provide raw IC perturbation

to be rescaled in this study (see section 2b). This study will fo-
cus on improving the first principle by making an IC perturba-
tion be closer to analysis uncertainty (intrinsic analysis error)
in vertical distribution.

To satisfy the first principle, a rescaling mask is normally
used to adjust (either amplify or reduce) perturbation magni-
tude after an initial “raw perturbation” being generated from
an IC perturbation scheme. Currently, a rescaling mask is two-
dimensional (2D), where a rescaling factor is calculated at a
representative model level (reference level) and then applied
indistinguishably to all levels such as in the NCEP global
(Toth and Kalnay 1997; Zhou et al. 2016, 2017) and regional
EPSs (Du and Tracton 2001), CMA EPS (Deng et al. 2010;
Liu et al. 2013), and other EPSs (e.g., Anderson and Anderson
1999). As a result, vertical distribution of IC perturbations
with a 2D rescaling mask often does not closely match vertical
distribution of analysis uncertainty (e.g., Zhou et al. 2017). To
mitigate the problem, this study extended from 2D to a three-
dimensional (3D) rescaling mask in a 3-km storm-scale EPS,
then systematically evaluated if it can improve ensemble fore-
cast performance and further investigated how it is achieved.

Extension from 2D to 3D rescaling mask has also gained at-
tention to others. For example, Met Office uses different re-
scaling factors for planetary boundary layer, stratosphere, and
troposphere in a global EPS (Flowerdew and Bowler 2013). A
study has also been done using the NCEP coarse-resolution
global EPS (GEFS; Ma et al. 2014), which showed an improve-
ment in ensemble performance of basic atmospheric state vari-
ables in a fall transition season (September–November) with
a 3D rescaling mask (derived from a hybrid ensemble data
assimilation system). Is this conclusion also valid for a high-
resolution regional EPS and other sensible weather elements
like precipitation? Thus, Wang et al. (2021) used a 3D rescal-
ing mask to ETKF perturbation in CMA’s Global/Regional
Assimilation and Prediction Enhanced System-based regional
EPS (GRAPES-REPS) and showed an improvement in en-
semble performance including precipitation forecast. Follow-
ing the bred vector’s masking strategy, their mask is derived
from time-averaged difference between two independent anal-
yses (ECMWF and GRAPES) and varies both horizontally and
vertically (only horizontally in the original BV’s mask). How-
ever, there are three possible deficiencies in their work. One is
about the robustness of their result since their work is only
based on a very short period of 9 days in spring transition sea-
son (7–15 May 2019). The second is that their rescaling factor is
not directly related to the analysis uncertainty of its own mod-
el’s data assimilation system but static differences between two
independent analyses. The third is the horizontal variation of
their rescaling factor, which will alter the raw perturbation’s
spatial structure coming out of a perturbation scheme and possi-
bly destroy fast-growing modes. There were other 3D rescaling
related works that did not explicitly and systematically compare
forecast performance between 2D and 3D masking strategies.
For example, Feng et al. (2019) used 3D rescaling in storm-scale
ensemble and focused on testing an ensemble-sensitivity analy-
sis-based perturbation method rather than 2D versus 3D com-
parison for a squall-line case. From the review of the past work,
we can see that a systematic comparison between 2D and

FIG. 1. Model domain (328–46.018N, 1088–123.998E,;1600 km3

1400 km), about 3-km horizontal resolution with 468 3 534 grid
points, plotted together with terrain height (m). There are 2413
auto rain gauge stations within the domain, which are used for pre-
cipitation verification.
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improved 3D rescaling masks in a high-resolution storm-scale
EPS over a longer time period including both warm and cold
seasons is still needed, which motivates us to perform this study.
To have a robust and generalized conclusion, this study will sys-
tematically compare the ensemble performances of both atmo-
spheric state variables and precipitation between 2D and 3D
rescaling in a 3-km storm-scale regional EPS (GRAPES-EPS)
for one summer month and one winter month. The summer
and winter months will be verified separately for a comparison.
The possible improvement mechanism will also be explored to
understand how and why it is achieved. Comparing to Wang
et al. (2021), the 3D rescaling mask employed by this study is
different in the following two aspects: 1) rescaling factor is de-
rived from a comparison to the estimated analysis uncertainty
of its own model’s data assimilation system (rather than a third
independent data assimilation system such as ECMWF’s), and
2) rescaling factor varies vertically but not horizontally so that
the horizontal structure (fast-growing modes) of raw perturba-
tion remains after rescaling (see section 2b for details).

In the remaining part of this paper, we will describe the
ensemble model configuration, the 3D mask design, and
data in section 2. Section 3 compares the performances of
ensemble forecasts between 3D and 2D masks in terms of
ensemble mean, spread and probabilistic forecasts, as well

as an exploration of possible underlying mechanism. A sum-
mary and discussion are given in section 4.

2. Experiment design

a. Model and EPS configuration

The base model used in the experiment is a regional ver-
sion of the GRAPES model called GRAPES_Meso. The
GRAPES is developed at the Earth System Modeling and Pre-
diction Center (former Numerical Weather Prediction Center)
of China Meteorological Administration (CMA, Chen et al.
2008; Chen and Shen 2006). The main features of the GRAPES
include a full compressible dynamical core with nonhydrostatic
approximation, a semi-implicit and semi-Lagrangian scheme for
time integration, and a height-based terrain following coordi-
nate. The model physics includes the Rapid Radiative Trans-
fer Model (RRTM) longwave radiation (Mlawer et al. 1997),
Dudhia shortwave radiation (Dudhia 1989), WSM-6 micro-
physics (Hong and Lim 2006), Noah land surface model (Mahrt
and Ek 1984), MRF PBL scheme (Hong and Pan 1996), and
Monin–Obukhov surface layer scheme (Noilhan and Planton
1989). Model analysis (IC) is produced by a three-dimensional
variational data assimilation scheme (Zhuang et al. 2014).
In this study, the GRAPES_Meso model runs on a regular

FIG. 2. A schematic illustration how the rescaling factor is calculated in 2D and 3D rescaling masks. (a) Vertical profiles of “raw” IC
perturbation from real time (red) and “analysis uncertainty” averaged over a past period (blue), where the arrows indicate their
“differences” at each level. (b) 2D rescaling factor (green dashed line) is calculated based on the difference between the raw IC perturba-
tion and analysis uncertainty at a given reference level [e.g., a midlevel shown in (a)] and then applied to all levels uniformly. (c) 3D rescal-
ing factors (green dashed line) are calculated based on the difference between the raw IC perturbation and analysis uncertainty at each in-
dividual level [shown in (a)] and then applied to each corresponding level separately. Since the rescaling factor is mathematically defined
as a ratio of analysis uncertainty to raw perturbation, it is a non-unit value: 1.0 means “no change” (i.e., raw perturbation will be used as
new perturbation), .1.0 means “enlargement” (i.e., raw perturbation will be enlarged as new perturbation), and ,1.0 means “reduction”
(i.e., raw perturbation will be reduced as new perturbation).
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latitude–longitude grid with a horizontal resolution of 0.038
(about 3 km) and a vertical resolution of 51 levels. The
model domain covers the following area: 328–46.018N and
1088–123.998E (468 3 534 5 249 912 grid points, Fig. 1) with
complex terrain from mountain to sea.

The GRAPES-Meso-based regional EPS (GRAPES-REPS)
consists of 15 members, including a control run and 14 per-
turbed ensemble members. The lateral boundary conditions
(LBCs) are provided by a T639 (about 28 km) global EPS
“T639-GEFS” which is also running operationally at CMA (Ma
et al. 2008). In this study, the GRAPES-EPS runs two cycles
per day, initiated at 0000 and 1200 UTC, respectively. The fore-
cast length is 36 h. A blended method is used to create IC per-
turbations by combining the smaller-scale ETKF perturbations
(Wang and Bishop 2003) from GRAPES-REPS and the larger-
scale breeding perturbations (Toth and Kalnay 1997) from
T639-GEFS. The details about this blended method are de-
scribed in Zhang et al. (2015). The benefit of a blended pertur-
bation has been well recognized in the scientific community by
taking advantages of both smaller-scale and larger-scale infor-
mation (e.g., Caron 2013; Du et al. 2015; Wang et al. 2014;
Zhang et al. 2015). It has also proven to be effective in amelio-
rating the problem of mismatch in the LBCs (Caron 2013;
Wang et al. 2014; Zhang et al. 2015). There are five state varia-
bles (zonal wind u, meridional wind y, potential temperature u,
dimensionless pressure p, and specific humidity q) in the
GRAPES model. All their ICs are perturbed in hoping to have
the fullest sampling in IC uncertainty space. A 2D rescaling
mask (Fig. 2b) is currently used to adjust IC perturbation mag-
nitude in the operational GRAPES-REPS, which is used as the
control experiment to be compared to the new 3D scheme in
this study.

Besides the perturbations to IC, physics perturbation is also
included in the GRAPES-REPS in the following two ways.
One uses multi-physics approach by varying PBL schemes
and convective parameterization schemes (see the Table 1 of
Xia et al. 2019 or Chen et al. 2020). Another is the stochasti-
cally perturbed parameterization tendency approach (SPPT,
Buizza et al. 1999; Du et al. 2018) which is also described in de-
tail in Xia et al. (2019). Both the control EPS and experiment
EPS use the exact same configurations in raw IC perturbation-
generating scheme and physics perturbation method except
the rescaling mask.

b. Three-dimensional (3D) rescaling mask

Rescaling factor is conceptually defined as a ratio of “analysis
uncertainty” to “raw IC perturbation.” For the control EPS, a
2D rescaling mask is used, where the rescaling factor or coefficient
is calculated within a representative midlayer (;550–500 hPa)
and then applied to all vertical levels constantly, as schemati-
cally shown in Fig. 2b. In this study, we replace the 2D with a
3D rescaling mask where the rescaling factor m(k) varies
with vertical level k as shown in Eq. (1) and schematically in
Fig. 2c:

m(k) 5
��������������������������
[Ue(k)]2 1 [Ve(k)]2

√
����������������������������
[spu(k)]2 1 [spy(k)]2

√ , (1)

whereUe(k) and Ve(k) are domain-averaged analysis uncertainty
of zonal wind u and meridional wind y at level k; and spu(k) and
spy(k) are domain-averaged raw IC perturbation size (spread) of
u and y at level k at model initialization time before being re-
scaled. The analysis uncertainty is an intrinsic error in IC esti-
mated by the GRAPES 3-DVAR data assimilation system (Ma
et al. 2009). Intrinsic analysis error (“uncertainty”) is estimated
by using the NMC method (Parrish and Derber 1992; Wu and
Purser 2002), where the horizontal correlation length scale is es-
timated with a Gauss function linear filtering method (Zhuang
et al. 2019). Such analysis uncertainty is estimated daily. An av-
erage of those analysis uncertainties over a past period (a year)
can be used to represent typical uncertainty in the analysis that
is used to initiate GRAPES_Meso model. From the Eq. (1), we
can see that the rescaling factor is the ratio of “analysis un-
certainty” to “raw IC perturbation” (i.e., the ensemble spread at
initialization time before rescaling) of wind speed or kinetic en-
ergy. Therefore, a new perturbation X′

new(i, j, k) for a variable
X at level k at a grid point (i, j) can be obtained by multiplying
the raw perturbation X′

raw(i, j, k) by the rescaling factor m(k) at
each grid point (i, j):

X′
new(i, j, k) 5 m(k) 3 X′

raw(i, j,k): (2)

Equations (1) and (2) suggest that when raw perturbation of
wind speed is larger (smaller) than analyzed wind speed un-
certainty, the rescaling factor is less (greater) than 1, suggest-
ing that the raw perturbation will be scaled down (up). The
raw perturbation will remain the same only when the rescal-
ing factor is equal to 1 (no rescaling). Since all state variables
are internally connected or coupled to each other through

FIG. 3. The vertical profiles of IC perturbation derived from the
2D (red) and 3D (blue) rescaling masks as well as the analysis un-
certainty (black) of the full wind speed (m s21). It is averaged over
1–28 Jul 2018 (including both 0000 and 1200 UTC cycles). The ver-
tical axis is the approximate isobaric level (hPa) corresponding to
model level.

WEATHER AND FORECAS T ING VOLUME 38202

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:35 PM UTC



dynamical equations, so are their perturbations. For example,
if temperature perturbation is too small, perturbations in
moisture and wind fields are likely too small too. Therefore,
rescaling factor m(k) derived from one or two variables (nor-
mally wind and/or temperature) will be uniformly applied to
all perturbed variables (wind u and y, temperature, moisture,
and pressure) in EPS design. For example, in deriving rescal-
ing factor, total energy (wind and temperature) is used in the
NCEP global EPS (Zhou et al. 2016; Ma et al. 2014), ECMWF
EPS (Molteni et al. 1996) and CMA EPS (Wang et al. 2021);
temperature is used in the NCEP SREF (Du et al. 2018); and
kinetic energy (wind) is used in this study. If different rescal-
ing factors were independently used for different variables, it
might even cause unbalance to a model. As already men-
tioned above, the raw perturbation in this study is created by
a blending of ETKF and breeding perturbations for both con-
trol EPS and experiment EPS.

Note that the rescaling factor in Eq. (1) is calculated based
on domain averaged values, which means that there is only

one value for each level (i.e., a same value for all grid points).
By doing this, spatial structure of a raw perturbation field at
each level will be reserved after being rescaled through Eq. (2).
This is because the spatial structure of a perturbation field is im-
portant for spread growth (e.g., Li et al. 2009), which is the sec-
ond principle mentioned in the introduction. If the rescaling
factor in Eq. (1) were calculated based on gridpoint values at
each grid point, the final resulting perturbation field would
be the same as the time-averaged analysis uncertainty field,
which could destroy the growing-mode structure imbedded
in the raw perturbation created by a well-designed perturba-
tion scheme (such as singular vector or bred vector). By the
way, if one chooses a rescaling factor of a particular level
(reference level l), m 5 m(l), and applies it to Eq. (2) for all
levels k, the Eq. (2) is simplified to a 2D rescaling mask:

X′
new(i, j,k) 5 m 3 X′

raw(i, j, k): (3)

The difference between 2D and 3D mask is also illustrated in
Fig. 2.

FIG. 4. The 24 h-accumulated precipitation (mm). (top) A warm-season heavy rain event (0000 UTC, 1000–0000 UTC 11 Jul 2008):
(a) observation, (b) ensemble mean forecast of the control EPS (2D), and (c) ensemble mean forecast of the experiment EPS (3D).
(bottom) A cold-season snow event (0000 UTC, 1000–0000 UTC 11 Feb 2019): (d) observation, (e) ensemble mean forecast of the
control EPS (2D), and (f) ensemble mean forecast of the experiment EPS (3D).
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From the above discussion, we can see that the rescaling fac-
tor in this study is calculated differently from Wang et al.
(2021) in the following two ways. 1) We use the model’s own
data assimilation system to estimate analysis error as the
“analysis uncertainty” used in Eq. (1) in hoping to be more
relevant to the IC of the model, while Wang et al. (2021) uses
the long-term average of two independent analyses (GRAPES
and ECMWF) as “analysis uncertainty” which reflects more of
general statistical property of analysis error. 2) Our rescaling
factor varies only vertically but not horizontally in hoping to
preserve the horizontal structure of raw fast-growing perturba-
tions at each level, while the rescaling factor of Wang et al.
(2021) varies both vertically and horizontally and adjusts per-
turbation magnitude differently at each grid point, which will
alter horizontal spatial structure of the raw IC perturbations.

c. Cases and data

A summer month (28 days from 1 to 28 July 2018) is exam-
ined first for warm season, which is a meteorologically active

period with about 11% above normal precipitation (Zhang
and Sun 2018). Since the GRAPES-REPS runs twice per day
(0000 and 1200 UTC cycles) to 36 h, there are a total of
28 3 2 5 56 36-h forecasts during this period. Therefore, the
warm-season verification results presented in section 3 is the
average of these 56 forecast cases over the model domain.
Then, a weather-active winter month (1–27 February 2019
with a total of 54 36-h forecasts) is repeated for cold season.
The warm-season results are compared to the cold-season
results for a deeper understanding.

The 3-km GRAPES-Meso analysis is used as truth for veri-
fication of all variables except for precipitation. There are
4683 5345 249 912 data points can be used for a robust veri-
fication at each forecast hour. The analysis is produced by a
3DVAR data assimilation system (the method is described by
Ma et al. 2009). Station observation, rawinsonde, aircraft data
(ACARS), and satellite data are assimilated. No radar data
are assimilated. For precipitation verification, auto rain gauge
observation is used. There are a total of 2413 auto rain gauges
within the model domain (Fig. 1).

FIG. 5. The 24 h-accumulated precipitation (mm). (top) A warm-season heavy rain event (0000 UTC, 1000–0000 UTC 11 Jul 2008):
(a) observation, (b) probability of exceeding 25 mm day21 predicted by the control EPS (2D), and (c) probability of exceeding 25 mm day21

predicted by the experiment EPS (3D). (bottom) A cold-season snow event (0000 UTC, 1000–0000 UTC 11 Feb 2019): (d) observation,
(e) probability of exceeding 0.25 mm day21 liquid water equivalent predicted by the control EPS (2D), and (f) probability of exceeding
0.25 mm day21 liquid water equivalent by the experiment EPS (3D).
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3. Results

a. Vertical structure of IC perturbation

Figure 3 shows the vertical profiles of the wind perturbation
from the 2D (red dash line) and 3D (blue dash line) masks,
compared to the analysis uncertainty (black solid line). The
perturbations are averaged over the model domain and the ex-
periment period (1–28 July 2018). It shows that the perturbation
with the 2D rescaling mask is too small in the entire atmosphere
and has incorrect vertical distribution below 700-hPa level, while
the perturbation with the 3D rescaling mask is much closer to
the analysis uncertainty with correct vertical distribution in the

entire atmosphere. In other words, the IC perturbation can bet-
ter represent the real analysis uncertainty through the 3D rescal-
ing mask, which is a desired feature (the first principle of
“representativeness”) for a good IC perturbation design. Similar
result is for the cold season (not shown).

b. Forecast improvements

In this section, all aspects of ensemble forecasts (ensemble
mean, spread and probability) will be thoroughly examined to
see if they can be improved after using a more realistic IC per-
turbation in vertical distribution through the 3D rescaling
mask. Besides showing two cases, seven scoring rules are used

FIG. 6. The RMSE (m s21) of the ensemble mean forecasts of U for (a) 250-hPa, (b) 500-hPa, (c) 850-hPa levels,
and (d) 10 m above ground level. The horizontal axis is the forecast hour. The blue curve is for the 3D mask, and the
red curve is for the 2D mask. It is averaged over 56 forecast cases (0000 and 1200 UTC cycles of 1–28 Jul 2018) and
the model domain. The percentage of the improvement at 6, 12, 18, 24, 30, and 36 h: 0.08%, 1.44%, 0.68%, 0.26%,
20.5%, and 20.85% at 250 hPa (average 5 0.2%) in (a); 20.93%, 1.1%, 1.2%, 1.0%, 0.7%, and 0.8% at 500 hPa
(average 5 0.5%) in (b); 2.88%, 3.44%, 1.95%, 1.55%, 1.4%, and 1.4% at 850 hPa (average 5 2.1%) in (c); and
4.89%, 4.41%, 2.68%, 1.89%, 1.38%, and 1.44% at 10 m (average5 2.8%) in (d). The statistical significance t-test re-
sults are shown in the bottom panel of each plot (also see Fig. 16), where the box indicates the range of 75% signifi-
cance level and the curve is RMSE difference (3D2 2D). If the curve is below (above) the box, the 3D mask forecast
is significantly improved (degraded) over the 2D mask forecast; if the curve is within the box, the change is neutral
(no significant improvement or degradation).
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to measure different aspects of an ensemble performance: one
(RMSE) for ensemble mean, three (spread, outlier, and consis-
tency) for ensemble spread, and three (CRPS, BS, and AROC)
for probabilistic forecasts. These scores will be briefly described
when they are used hereafter. A review of ensemble verification
scores can be found in Jolliffe and Stephenson (2003) as well as
Du and Zhou (2017). Verification will be carried out at three
representative levels: upper (250 hPa), middle (500 hPa), and
lower (850 hPa) levels for wind (U and V), temperature (T), and
geopotential height (H). The four surface weather elements
were also verified, which includes 2-m temperature T, 10-m wind
(U and V), precipitation, and mean sea level pressure (P_MSL).
Individual results are presented in sections 3b(1)–3b(4), while a
summary score card of all results is presented in section 3b(5).
Since there are so many scores being used to verify each of those
variables for two seasons (warm and cold season), a large num-
ber of figures are produced. It is not feasible to show all of them
in the article. Therefore, only representative variables of warm
season will be demonstrated as examples in individual verifica-
tion results, but all variables will be shown in summary figures.
To show as many variables as possible, different variables are
demonstrated for different aspects (mean, spread, and probabil-
ity) of ensemble performance. In section 3b(5), the cold-season
results will be compared to the warm-season results. The scores
are robustly calculated over the entire model domain using
249 912 (468 3534) data points at each forecast hour. The

verification results shown are the average of either all summer
cases or all winter cases unless specified otherwise.

1) CASE SHOW

Figure 4 shows the ensemble mean forecasts of 24-h accumu-
lated precipitation for two cases: a warm-season case (the top
panel) and a cold-season case (the bottom panel). For the
warm-season case (initiated from 0000 UTC 10 July 2018), the
forecast of 2D rescaling mask (Fig. 4b) obviously missed the ob-
served northeast–southwest-oriented heavier precipitation band
($10 mm with some areas of exceeding 25 mm) along the coast
of Shandong peninsula (the highlighted area of Fig. 4a), while
the forecast of 3D rescaling mask provided the information of
this event (Fig. 4c). Similarly, for the cold-season case (initiated
from 0000 UTC 10 February 2019), the forecast of 2D rescaling
mask (Fig. 4e) completely missed a large area of observed snow
event (with liquid water equivalent of 0.1–2.5 mm which is a
high-impact event given lower-latitude and larger areal cover-
age) spreading from the southern part of North China to
Jiangsu Province (the highlighted south portion of the domain)
(Fig. 4d), while the forecast of 3D rescaling mask predicted it
(Fig. 4f). The enhanced information in the ensemble mean im-
plies that the observed events were correctly captured by more
members in the 3D ensemble than in the 2D ensemble if it is
not completely missed by the 2D EPS. To demonstrate this, the

FIG. 7. Improvement (%) in ensemble mean fore-
casts of zonal wind, temperature, geopotential height,
and sea level pressure, in terms of RMSE, averaged
over 1–28 Jul 2018.
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corresponding probabilistic forecasts are shown in Fig. 5. Over
the highlighted observed 25-mm area of the summer case
(Fig. 5a), the probability of exceeding 25 mm in the 3D en-
semble is about 10%–15% (Fig. 5c), while it is 0% in the 2D en-
semble (Fig. 5b). For the highlighted winter snow case (Fig. 5d),
the probability of exceeding 0.25-mm liquid water equiva-
lent in the 3D ensemble is generally 30%–35% with some
over 40% (Fig. 5f), while it is largely 0% in the 2D ensemble
(Fig. 5e). This useful probability information contained in
the 3D ensemble will certainly give forecasters a heads up
of these incoming events.

Admittedly, a success comes not free but with an expense.
Due to the imperfect model physics and ICs, a larger diversity
in an ensemble will also lead to more false alarm cases

although some ensemble members might contain more accu-
rate forecast information. This adverse side effect is typical
for an EPS. For example, some precipitation areas in the 3D
ensemble forecasts were also falsely expanded in both cases,
which is especially obvious in the winter case (e.g., Figs. 4e,f).
There is always a trade-off between increasing ensemble di-
versity and false alarm rate in building an EPS. As a matter of
fact, the primary mission of an EPS is not to provide an accu-
rate deterministic forecast but estimate reliable confidence or
uncertainty information associated with a forecast (Du et al.
2018). Individual cases give us only a snapshot but not the
overall performance of an ensemble. That is why it needs
many cases but not just one case in evaluating an EPS. Many
cases will be statistically evaluated for ensemble mean, spread

FIG. 8. The ensemble spread (K) of temperature for (a) 250-hPa, (b) 500-hPa, (c) 850-hPa levels, and (d) 2 m above
ground level. The horizontal axis is forecast hour. The blue curve is for the 3D mask, and the red curve is for the 2D
mask. It is averaged over 56 forecast cases (0000 and 1200 UTC cycles of 1–28 Jul 2018) and the model domain. The per-
centage of the improvement at 6, 12, 18, 24, 30 and 36 h: 16.56%, 6.46%, 4.19%, 1.93%, 0.16%, and 0.23% at 250 hPa
(average: 4.9%) in (a); (b) 29.1%, 14.31%, 8.08%, 5.14%, 2.5%, and 1.65% at 500 hPa (average 5 10.1%) in (b);
60.47%, 32.13%, 18.89%, 11.9%, 6.29%, and 3.32% at 850 hPa (average5 22.2%) in (c); and 64.75%, 32.48%, 22.89%,
12.71%, 7.98%, and 4.52% at 2 m (average 5 24.2%) in (d). The statistical significance t-test results are shown in the
bottom panel of each plot (also see Fig. 16), where the box indicates the range of 75% significance level and the curve is
spread difference (3D 2 2D). If the curve is above (below) the box, the 3D mask forecast has significantly larger
(smaller) spread than the 2D mask forecast; if the curve is within the box, the change is neutral (no significant increase
or decrease).
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and probabilistic forecasts hereafter [sections 3b(2)–3b(5)].
For an under-dispersive EPS (which is the case in this study),
increasing diversity among ensemble members is generally
beneficial [see section 3b(3) about ensemble spread evalua-
tion]. By the way, an ensemble mean forecast will theoreti-
cally overestimate areal coverage for lighter precipitation and
underestimate it for heavier precipitation during arithmetic
averaging for a non-Gaussian distributed variable like precipi-
tation, which was discussed by Du et al. (1997). Therefore,
probabilistic information is more preferred than ensemble
mean in predicting precipitation.

2) ENSEMBLE MEAN FORECASTS

Below we will use root-mean-squared error (RMSE) to
quantitatively measure the ensemble mean performance of
more variables. Figure 6 is the RMSE of zonal wind U at four
levels varying with forecast hours. The 3D mask run (blue
curve) has less error than the 2D mask run (red curve) at all
levels and all forecast hours (except for the 250 hPa at 30 and
36 h). The improvement is larger at surface and lower level
than upper level. For example, the averaged improvement
of 6–36-h U forecasts is about 2.8%, 2.1%, 0.5%, and 0.2%
at 10 m above ground level and 850, 500, and 250 hPa,

FIG. 9. The outlier score (%) of ensemble spreads of temperature for (a) 250-hPa, (b) 500-hPa, (c) 850-hPa levels,
and (d) 2 m above ground level. The horizontal axis is forecast hour. The blue curve is for the 3D mask, and the red
curve is for the 2D mask. It is averaged over 56 forecast cases (0000 and 1200 UTC cycles of 1–28 Jul 2018) and the
model domain. The percentage of the improvement at 6, 12, 18, 24, 30, and 36 h: 34.7%, 20.97%, 10.47%, 11.59%,
7.56%, and 1.48% at 250 hPa (average: 14.5%) in (a); 47.76%, 26.67%, 14.71%, 13.46%, 9.54%, and 8.59% at 500
hPa (average 5 20.1%) in (b); 43.63%, 35.51%, 22.97%, 18.15%, 10.9%, and 7.84% at 850 hPa (average5 23.2%) in
(c); and 24.26%, 28.7%, 13.04%, 14.91%, 7.31%, and 8.13% at 2 m (average 5 16.1%) in (d). The statistical signifi-
cance t-test results are shown in the bottom panel of each plot (also see Fig. 16), where the box indicates the range of
75% significance level and the curve is the outlier difference (3D 2 2D). If the curve is below (above) the box, the
outlier of 3D mask forecast is significantly reduced (increased) over that of 2D mask forecast; if the curve is within
the box, the change is neutral (no significant reduction or increase).
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respectively. The improvement decreases with the increase
of forecast length too (see the percentage values of the im-
provement listed in the figure caption). Results of tempera-
ture and geopotential height/pressure are similar to that of
wind: the 3D mask runs have generally less error than the
2D mask runs at all levels and all forecast hours. Decreasing
of the improvement with the increase of altitude and fore-
cast hour are also observed. For example, the averaged im-
provement of 6–36-h temperature forecasts is about 2.2%,
2.5%, 0.8%, and 1.4% at 2 m and 850, 500, and 250 hPa, re-
spectively. The averaged improvement of 6–36-h geopoten-
tial height or pressure forecasts is about 2.5%, 3.4%, 2.0%,
and 0.3% at sea level, 850, 500, and 250 hPa, respectively.
All the improvements of ensemble mean forecasts are sum-
marized in Fig. 7, where the relative improvement among
levels and the improvement’s decreasing trend with forecast
hours can be clearly seen.

By the way, although the improvement in ensemble mean
forecasts is noticeable and statistically significant, it is the
least compared to the improvements in ensemble spread
and probabilistic forecasts (to be discussed in the next two
subsections).

3) ENSEMBLE SPREAD

Three scores are used to measure the quality of ensemble
spread. One is the ensemble spread itself, which is defined as a
standard deviation of ensemble members’ forecasts with respect
to ensemble mean. For an underdispersive EPS such as this one
(the GRAPES EPS used in this study is under-dispersive), en-
semble spread is not large enough to match ensemble mean
forecast error (not shown). Therefore, increasing ensemble
spread is a positive improvement. Figure 8 shows the ensemble
spread of temperature at the four levels varying with forecast
hours. The ensemble spread is greatly enhanced in the 3D mask
run at all levels and forecast hours. These improvements are
statistically significant (except for 30 and 36 h at 250 mb). Like
the improvement in ensemble mean, the following two features
are even more obvious for ensemble spread: the improvement
decreases with the increase of forecast length and the increase
of altitude. The averaged improvement of 6–36-h ensemble
spread is about 24.2%, 22.2%, 10.1%, and 4.9% for 2-m and
850-, 500-, and 250-hPa temperature, respectively. Similar re-
sults are observed for the zonal wind U and geopotential
height/pressure forecasts. The averaged improvement of 6–36-h
ensemble spread is about 18.6%, 18.4%, 12.2%, and 5.7% for

FIG. 10. Improvement (%) in ensemble forecast
spread of zonal wind, temperature, geopotential
height, and sea level pressure, in terms of the spread
score itself. Similar improvement in terms of outlier
reduction and consistency can also be obtained.
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10-m and 850-, 500-, and 250-hPa wind U, respectively. The av-
eraged improvement of 6–36-h ensemble spread is about
11.9%, 8.7%, 5.0%, and 3.2% for mean sea level pressure and
850-, 500-, and 250-hPa geopotential height, respectively. Among
the three variables, the least improvement in ensemble spread
is in the mass field (3.2%–11.9%) compared to the wind
(5.7%–18.6%) and temperature fields (4.9%–24.2%).

The second score is the outlier that counts how often (in %)
an observation falls out of an ensemble envelope (i.e., the en-
semble forecast range from minimum member to maximum
member). It is to measure the capability of an ensemble to

encompass an observation. The outlier is derived from the
rank histogram (or Talagrand distribution) by adding the two
far-end bins together. Forecasters and users at the CMA and
its field offices normally prefer the outlier score more than
the histogram because the outlier directly shows the missing
rate of an EPS forecast. Since the outlier is a missing rate, the
smaller the better. As the spread increases (with no worsening
in ensemble mean position at the same time), the outlier has
also significantly reduced. For example, the average reduction
of 6–36-h outlier is about 16.1%, 23.2%, 20.1%, and 14.5% for
2-m and 850-, 500-, and 250-hPa temperature, respectively

FIG. 11. The CRPS of probabilistic forecasts of geopotential heightH for (a) 250-hPa, (b) 500-hPa, and (c) 850-hPa
levels, as well as (d) mean sea level pressure P_MSL. The horizontal axis is forecast hour. The blue curve is for
the 3D mask, and the red curve is for the 2D mask. It is averaged over 56 forecast cases (0000 and 1200 UTC cycles
of 1–28 Jul 2018) and the model domain. It is averaged over the period of 1–28 Jul 2018 (including both 0000 and
1200 UTC cycles). The percentage of the improvement at 6, 12, 18, 24, 30, and 36 h: 1.58%, 0.41%, 1.17%, 3.39%,
1.97%, and 1.85% at 250 hPa (average 5 1.7%) in (a); 8.51%, 2.19%, 5.75%, 5.44%, 4.58%, and 3.21% at 500 hPa
(average 5 5.0%) in (b); 16.59%, 6.57%, 6.51%, 6.28%, 5.13%, and 4.85% at 850 hPa (average 5 7.7%) in (c); and
11.63%, 5.18%, 4.79%, 4.48%, 4.65%, and 3.25% at sea level (average 5 6.0%) in (d). The statistical significance
t-test results are shown in the bottom panel of each plot (also see Fig. 16), where the box indicates the range of 75%
significance level and the curve is CRPS difference (3D 2 2D). If the curve is below (above) the box, the 3D mask
forecast is significantly improved (degraded) over the 2D mask forecast; if the curve is within the box, the change is
neutral (no significant improvement or degradation).
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(Fig. 9). The average reduction of 6–36-h outlier is about 18.7%,
24.3%, 20.7%, and 12.1% for 10-m and 850-, 500-, and 250-hPa
wind U, respectively. The average reduction of 6–36-h outlier is
about 14.4%, 15.0%, 12.3%, and 9.0% for mean sea level pres-
sure and 850-, 500-, and 250-hPa geopotential height, respec-
tively. Again, the improvement in outlier also decreases with the
increase of forecast length and the increase of altitude. More im-
provement is in temperature (14.5%–23.2%) and wind (12.1%–

24.3%) than in geopotential height and pressure (9.0%–15.0%).
Since outliers could be improved at the expense of overdis-

persion in ensemble spread, the third score “consistency” is
also evaluated to monitor the spread–skill relation. If both
outlier and consistency are improved, it is a desired healthy
improvement in ensemble spread. “consistency” is a score to
measure spread–skill relationship, which is normally defined
as the ratio of ensemble mean forecast’s RMSE to ensemble
spread. For an ideal ensemble, consistency score is close to 1.0
since ensemble spread simulates possible error in ensemble
mean forecast. If consistency is greater (less) than 1.0, an ensem-
ble is underdispersive (overdispersive), indicating ensemble
spread is smaller (greater) than ensemble mean forecast error. In
this study, an alternative version of consistency is used as Eq. (4):

consistency 5 1 2
RMSE of ens mean fcst

ensemble spread
: (4)

With this new definition, consistency is close to 0.0 for a perfect
ensemble (spread 5 RMSE); consistency , 0 for an underdis-
persive ensemble (spread, RMSE); and consistency. 0 for an
overdispersive ensemble (spread . RMSE). The results in
terms of consistency score are included in the summary score
card (later Fig. 16), which shows similar significant (at 95%–

99.7% level) improvements as the spread and outlier. In other
words, the increase of ensemble spread is generally in the right
direction and does not cause overdispersion (as a matter of fact,
the ensemble spread is still too small for lower level and surface
variables). Figure 10 summarizes all the improvements of en-
semble forecast spread, where we can clearly see the relative im-
provement among vertical levels and variables as well as the
improvement’s decreasing trend with forecast length as we have
discussed above.

4) PROBABILISTIC FORECASTS

The continuous ranked probability score (CRPS) is often
used to evaluate performance of probabilistic forecasts. Anal-
ogous to the mean squared error for deterministic forecasts,
CRPS is a mean squared difference between predicted cumu-
lative probability density function (CDF) and observed CDF
(either 0 or 1) over continuous mutually exclusive and collec-
tively exhaustive categories (see the appendix of Du et al.
1997). It is a negatively oriented score, i.e., the smaller the

FIG. 12. Improvement (%) in probabilistic forecasts
of zonal wind, temperature, geopotential height, and
sea level pressure, in terms of CRPS.
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better, with zero as a perfect score. CRPS is impacted by both
reliability and resolution of a forecast (Jolliffe and Stephenson
2003). Figure 11 is the CRPS of geopotential height at various
levels as well as sea level pressure varying with forecast hours.

The 3D mask run has significantly less error (lower CRPS)
over the 2D mask run at all levels and all forecast hours. More
improvement is at lower levels (850 hPa and sea level) than
the higher levels (250 and 500 hPa), which is more obvious in

FIG. 13. BS of probabilistic precipitation forecasts for (a) light [.0.1 mm (6 h)21], (b) moderate [.4 mm (6 h)21],
and (c) heavy [.13 mm (6 h)21] precipitation events. The horizontal axis is forecast hour. The blue curve is for the
3D mask, and the red curve is for the 2D mask. It is averaged over 56 forecast cases (0000 and 1200 UTC cycles of
1–28 Jul 2018) and the model domain. The percentage of the improvement at 6, 12, 18, 24, 30 and 36 h: 15.23%,
6.05%, 3.72%, 2.79%, 2.24%, and 1.76% for light rain (average 5 5.3%) in (a); 8.6%, 4.75%, 3.52%, 2.24%, 2.96%,
and 2.3% for moderate rain (average 5 4.1%) in (b); and 6.15%, 5.35%, 3.88%, 3.02%, 4.09%, and 1.49% for heavy
rain (average5 4.0%) in (c). The statistical significance t-test results are shown in the bottom panel of each plot (also
see Fig. 16), where the box indicates the range of 75% significance level and the curve is BS difference (3D 2 2D). If
the curve is below (above) the box, the 3D mask forecast is significantly improved (degraded) over the 2D mask fore-
cast; if the curve is within the box, the change is neutral (no significant improvement or degradation).

TABLE 1. Days of observed precipitation categories during the verification period.

1–28 Jul 2018 (30–36-h forecasts cover
28.5 days into 0000–1200 29 Jul) 0000–0600 UTC 0600–1200 UTC 1200–1800 UTC 1800–2400 UTC

Light rain [0.1–4.0 mm (6 h)21] 29 29 28 28
Moderate rain [4.0–13.0 mm (6 h)21] 29 29 28 28
Heavy rain [$13.0 mm (6 h)21] 26 (3 days w/o

heavy rain)
29 26 (2 days w/o

heavy rain)
27 (2 days w/o
heavy rain)
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wind and temperature fields (Fig. 12). The average improve-
ment of 6–36 h CRPS score is about 6.0%, 7.7%, 5.0%, and
1.7% for P_MSL and 850-, 500-, and 250-hPa geopotential
height, respectively. This improvement decreases quickly from
6 to 12 or 18 h and remains generally at a same level for the
rest of forecast hours (can be seen more clearly from Fig. 12).
Similar results were observed for wind and temperature. The
average improvement of 6–36 h CRPS score is about 6.1%,
5.5%, 1.6%, and 1.9% for 10-m and 850-, 500-, and 250-hPa
wind U, respectively. The average improvement of 6–36-h
CRPS score is about 6.6%, 6.2%, 3.0%, and 2.2% for 2-m and
850-, 500-, and 250-hPa temperature, respectively. Figure 12

summarizes all the improvements in probabilistic forecasts,
where we can see the relative improvement among levels and
the improvement’s decreasing trend with forecast hours clearer.

When the number of forecast categories is reduced to two
(e.g., rain or no rain), the CRPS becomes the Brier score
(BS). Figure 13 is the BS of probabilistic precipitation fore-
casts for light [$0.1 mm (6 h)21], moderate [$4 mm (6 h)21],
and heavy rain [$13 mm (6 h)21]. The error has been signifi-
cantly reduced (lower BS) especially prior to 18 h. The im-
provement quickly decreases with the increase of forecast
hours prior to 24 h, and then remains similarly for the rest of
forecast hours. On average over 6–36-h forecast range, the

FIG. 14. AROC of probabilistic precipitation forecasts for (a) light [.0.1 mm (6 h)21], (b) moderate [.4 mm
(6 h)21], and (c) heavy [.13 mm (6 h)21] precipitation events. The horizontal axis is forecast hour. The blue
curve is for the 3D mask, and the red curve is for the 2D mask. It is averaged over 56 forecast cases (0000 and
1200 UTC cycles of 1–28 Jul 2018) and the model domain. The percentage of the improvement at 6, 12, 18, 24,
30 and 36 h: 10.05%, 4.73%, 2.11%, 1.5%, 0.1%, and 0.58% for light rain (average 5 3.2%) in (a); 14.75%,
6.87%, 2.72%, 1.07%, 0.27%, and 1.28% for moderate rain (average 5 4.5%) in (b); and 12.16%, 6.91%, 0.87%,
1.77%, 0.8%, and 1.97% for heavy rain (average 5 4.1%) in (c). The statistical significance t-test results are
shown in the bottom panel of each plot (also see Fig. 16), where the box indicates the range of 75% significance
level and the curve is AROC difference (3D 2 2D). If the curve is above (below) the box, the 3D mask forecast
is significantly improved (degraded) over the 2D mask forecast; if the curve is within the box, the change is neu-
tral (no significant improvement or degradation).
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improvement is similar (about 4% and 5%) for all three rain
categories, which indicates that the 3D rescaling mask cannot
only improve light rain but also heavy rain events. However,
readers need to keep in mind that although light, moderate
and heavy rain events occur almost every day (Table 1) dur-
ing the verification periods, the areal coverage of heavy rain is
smaller than light and moderate categories, caution should be
used in interpreting heavy rain category results.

Another measure to verify probabilistic precipitation fore-
casts is the relative operating characteristic (ROC). An ROC
curve is plotted on a plane where the probability of detection
(hit rate) is in the vertical axis (y axis) against the probability
of false detection (false alarm rate) in the horizontal axis
(x axis). Therefore, it measures ability of a forecast to discrimi-
nate between event (occurrence) and nonevent (nonoccur-
rence) (i.e., the resolution aspect of a forecast). For a good
forecast, the hit rate should be as high as possible, while the
false alarm rate should be as low as possible at the same time.
The area under the ROC curve (AROC) is often used as a
summary score of forecast resolution. The AROC value
ranges from 0 (the worst score, hit rate is 0.0 and false alarm
rate is 1.0 or ROC curve is the x axis) to 1 (the perfect score,
hit rate is 1.0 and false alarm rate is 0.0 or the ROC curve is
alone the y-axis forming a 1 3 1 square). The diagonal line
(AROC is 0.5) indicates that hit rate is equal to false alarm
rate (50%), which is a boundary to distinguish a random fore-
cast. In other words, a forecast is better (worse) than a random
forecast when AROC is greater (less) than 0.5, indicating that
hit rate exceeds (is lower than) false alarm rate. Figure 14
shows the AROC scores for the same three rain categories
(light, moderate and heavy). Both 2D and 3D mask runs are
skillful (AROC . 0.5). The improvement in terms of AROC
is also observed for all three rain categories. On average over
6–36-h forecast range, the improvement is similar (around
4%) for all three rain categories. The improvement is, how-
ever, particularly striking prior to 18 h with the statistical confi-
dence level of exceeding at least 75%. This is because the 3D
mask run has almost eliminated the model spinup issue of the
2D mask run in precipitation forecasts. For example, the

forecast skill in the 2D mask run unusually increases with fore-
cast hours prior to 18 h and then naturally decreases with the
increase of forecast length. This “spinup” phenomenon has
been overcome in the 3D mask run. After that the improve-
ment slightly decreases or remains similarly with forecast time.
Figure 15 summarizes the improvements in probabilistic quan-
titative precipitation forecasts in terms of both BS and
AROC, where the improvement’s decreasing trend with fore-
cast hours can be clearly seen for all three categories.

5) A SUMMARY OF ALL SCORES

All the verification scores of ensemble mean, spread and
probabilistic forecasts are summarized in a scorecard for all
variables (Fig. 16). From the scorecard, we can see the follow-
ing. (i) The benefit of 3D rescaling mask to ensemble perfor-
mance is obvious: out of 420 verification measurements,
49% (205/420) is significantly improved (at 75%, 95%, and
99.7% levels), 50% (210/420) is comparable or neutral (not
statistically significant), and only 1% (5/420) is significantly
degraded (mainly upper level geopotential height spread).
(ii) Significant improvement (at 75%, 95%, and 99.7% lev-
els) is mainly occurred in the early forecast hours primarily
prior to 24 h and lower levels (850 hPa and surface). The de-
creasing impact of IC perturbation methods with forecast
length is similar to what Li et al. (2017) found in their study.
(iii) Overall, the biggest improvement occurred in the en-
semble spread in terms of outlier and consistency. Due to
the increased spread, ensemble envelope can encompass ob-
servation more often (i.e., reduced outlier), and ensemble
spread is more representative to forecast error of ensemble
mean (i.e., improved consistency or spread–skill relation-
ship). The second biggest improvement is probabilistic fore-
cast in terms of CRPS, BS and AROC, which becomes more
reliable and sharper. The least improved is ensemble mean
forecasts in terms of RMSE. This is expected given the fact
that the base model GRAPES_Meso has a quite large fore-
cast bias and the bias is a big part of ensemble mean forecast
error (see Wang et al. 2018). Unless a model-based bias cor-
rection scheme (such as Chen et al. 2020) is implemented

FIG. 15. Improvement (%) in probabilistic forecasts of three precipitation categories (light, moderate, and heavy), in
terms of (a) BS and (b) AROC.
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together with an ensemble perturbation scheme (such as
Xia et al. 2019), pure ensemble perturbation techniques ad-
dress random error only but not model bias (Du et al. 2018).

To better demonstrate this layered improvement structure
among ensemble mean, spread, and probabilistic information,
Fig. 17 shows an example of surface variables (10-m U, 2-m T,
P_MSL, and light, moderate, and heavy precipitation), where
improvements in ensemble mean, spread and probabilistic
forecasts are compared side by side. For the average of 6–36-h
forecasts (Fig. 17a), the improvement is about 20% for en-
semble spread, 5% for probabilistic forecasts, and 2.5% for
ensemble mean forecasts. For the average of first 18-h fore-
casts (Fig. 17b), the improvement is about 30% for ensemble
spread, 9% for probabilistic forecasts, and 4% for ensemble
mean forecasts.

We have repeated the same set of experiment and verifica-
tion for a cold-season period: 1–27 February 2019. Similar re-
sults are also seen although the improvement is in a lesser
degree compared to the warm-season period. All verification
scores of the cold-season cases are summarized in the score-
card in Fig. 18. We can see that 27% (114/420) of all scores
have statistically significant improvement, 72% (303/420) of
them are comparable or neutral (not statistically significant),
and less than 1% (3/420) is significantly degraded (overdisper-
sion). Also note that due to no enough sample for the heavy
rain category in the cold season, some statistical significance
levels cannot be calculated but just leave blank in the score-
card for heavy rain category (Fig. 18). In the following sec-
tion, we will try to preliminarily explore how this 3D rescaling
method might work and to understand why it works better in

FIG. 16. Scorecards of the 3D mask experiment for the warm season (1–28 Jul 2018). Green indicates an improve-
ment, red indicates a degradation, and gray is neutral (changes not statistically significant) with respect to the control
2D mask run. Different symbols are associated with different level of statistical significance of a t test (see the legend
for the details). Note that the scores AROC and BS were used for precipitation forecasts only. For score definitions,
please see the related text.
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warm season than in cold season and why the improvement
decreases with the increasing of forecast length.

c. Improvement mechanism

From the above analysis such as Figs. 16 and 17, we see that
most obvious improvement is in the boost of ensemble
spread, which subsequently results in the improvements in
probability distribution and ensemble mean forecasts for an
underdispersive EPS. In this section, we will explore possible
mechanism leading to the differences in ensemble spread
growth as well as the different performances between warm
and cold seasons. Since ensemble IC perturbation growth is
related to atmospheric instabilities (Toth and Kalnay 1997),
the relationship between instability and ensemble spread
change (e.g., spread increase from 2D rescaling-based EPS to
3D rescaling-based EPS) is investigated.

There are two dominant instabilities for weather to de-
velop: baroclinic and convective instabilities. Baroclinic insta-
bility is a process by which disturbances draw (kinetic) energy
from the mean-flow potential energy through warm air rising
and cold air sinking in zones with large horizontal tempera-
ture gradient. Given the thermal wind balance, it is also re-
flected in vertical wind shear. Therefore, it can also be defined
as the nonuniform vertical distribution of mean zonal flow (u):

baroclinicity ~ 2


p
u
p

( ) . 0 unstable
5 0 neutral
, 0 stable

, (5)

where p is pressure. For example, zonal wind speed increases
with height (decreases with pressure) below a jet stream and
decreases with height (increases with pressure) above it,
which results in baroclinicity. 0 and causes very strong baro-
clinic instability near a jet stream. Convective instability is

related to the vertical distribution of atmospheric thermal
condition and defined as

convective instability 5
ue
p

. 0 unstable
5 0 neutral
, 0 stable

, (6)

where ue is equivalent potential temperature. In a convec-
tively unstable (stable) atmosphere, when an air parcel rises it
will accelerate (decelerate) because it will be warmer (cooler)
than its surrounding environmental air.

We have, therefore, examined if the spread change from
the 2D to 3D rescaling-factor based EPS is related to the
baroclinic or convective instabilities. The instabilities are
calculated from the ensemble mean forecast of the 3D re-
scaling-factor EPS. The horizontal temperature gradient
magnitude is used for the baroclinic instability, and Eq. (6)
is used for the convective instability. Figure 19 compares the
spread increment (color shaded) of 850-hPa specific humid-
ity to the baroclinic instability (contour) at forecast hours of
18, 24, 30, and 36, initialized at 0000 UTC 10 February 2019
[the same cold-season snow event demonstrated in section
3b(1)]. The baroclinic instability area is not well organized
but scattered in smaller scale and does not match to the
spread increment area. Figure 20 compares the spread incre-
ment to the convective instability for the same cold-season
case.

In contrast to the baroclinic instability, the convective insta-
bility is more organized at the larger scale and matches the
spread increment area better. Figures 21 and 22 are the same
as Figs. 19 and 20 but initiated from 0000 UTC 10 July 2018
[the same warm-season heavy rain case of section 3b(1)],
where the similar results are observed as in the snow event.

To examine this relationship more quantitatively, spatial
correlation between the spread change of 850-hPa specific

FIG. 17. Improvement (%) of surface variables (10-m wind U, 2-m temperature, sea level pressure, and light/moderate/heavy precipita-
tions) for 1) ensemble mean forecasts in terms of RMSE, 2) ensemble forecast spread in terms of spread itself, 3) probabilistic forecasts of
basic fields in terms of CRPS, and 4) probabilistic quantitative precipitation forecasts (PQPF) of three categories (light, moderate, and
heavy) in terms of BS. (a) Averaged over 6–36 h and (b) averaged over 6–18 h.

WEATHER AND FORECAS T ING VOLUME 38216

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:35 PM UTC



humidity and the instabilities have been calculated for the
summer and winter experiment periods. The result is shown
in Fig. 23. We can see that the spread change is more corre-
lated to convective instability than baroclinic instability for
both seasons. The correlation seems to be stronger in summer
than winter. This result suggests that the increase of ensemble
spread in the experiment EPS is likely through the convective
instability. Given that the EPS is in storm-scale (3 km), it is
not surprising to see that convective instability plays a more
important role than baroclinic instability for the spread
growth. Therefore, to have a more effective storm-scale EPS
of short-range forecasts over a region, its IC perturbation
should be designed to target the structure of convective insta-
bility. This might be different for a synoptic-scale and global
EPS where IC perturbation targets more on baroclinic insta-
bility (Toth and Kalnay 1997).

Comparing the summer case (Fig. 22) with the winter case
(Fig. 20), we can see that the convective instability is much
stronger in warm season (;2.0 3 0.000 01 K Pa21) than in
cold season (;0.5 3 0.000 01 K Pa21). This explains why the
spread increment and forecast improvement is more in the
summer month than in the winter month. Since convective in-
stability is a fast-growing mode, ensemble spread associated
with it becomes saturated quickly with time. This could also
explain why the improvement decreases with the increase of
forecast length. This result implies that retaining or further in-
creasing ensemble spread beyond a certain forecast length
might be more difficult for a storm-scale EPS than a synoptic-
scale global EPS, which EPS developers should pay attention
to. Note that since this investigation into the relationship be-
tween ensemble spread growth and atmospheric instabilities
in a storm-scale EPS is very preliminary (based on only one

FIG. 18. As in Fig. 16, but for the cold season (1–27 Feb 2019). Note that there is not a large enough sample size to
calculate statistical significance level for the heavy precipitation category [.13 mm (6 h)21] at 6, 18, 30, and 36 fore-
cast hours for AROC.
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variable 850-hPa specific humidity), the result here only tends
to shed light on this topic but not definitive. More rigorous in-
depth study is needed to thoroughly understand storm-scale
EPS’ behaviors.

4. Summary and discussion

A 3D mask to rescale IC perturbation has been proposed
and tested using a 3-km storm-scale EPS. A systematic
evaluation has been conducted to examine if it improves
ensemble forecasts. The forecasts of wind, temperature,
and geopotential height at various levels, sea level pressure
and precipitation have been examined in terms of ensemble
mean forecast, ensemble spread and probabilistic forecast.
The study was carried out in a summer month (1–28 July
2018) and a winter month (1–27 February 2019) over a re-
gion in North China. The experiment runs twice per day ini-
tiated at 0000 and 1200 UTC into 36 h in forecast length,
providing a total of 56 36-h forecast warm-season cases and
54 cold-season cases for verification. To compare the differ-
ences in performance, warm and cold seasons were verified
separately. Below is a summary of the findings with some
discussions.

(i) As intended, the 3D mask makes the IC perturbation
more representative to analysis uncertainty than the 2D
mask. The vertical profile of the IC perturbation size is
much closer to the estimated intrinsic analysis error.

(ii) The performance of ensemble forecasts has been sig-
nificantly improved in all aspects including ensemble
mean forecast, ensemble spread and probabilistic fore-
casts. The most improvement occurred in ensemble
spread, followed by probabilistic forecasts, while the
least improvement is associated with the ensemble
mean forecast. This could be explained by the fact that
an improvement to IC perturbation method mainly im-
proves ensemble diversity (spread) but does not re-
duce model bias, while bias error constitutes a major
part of ensemble mean forecast error for the base
model. The improvements are larger in warm season
than in cold season.

(iii) The improvement decreases with the increase of fore-
cast length. This result is consistent with the conclusion
of Li et al. (2017) who found that the resulting ensemble
spread from vastly different perturbation-generating
methods became similar to each other when forecast
length increased.

FIG. 19. Baroclinic instability (derived from the 3D EPS’s ensemble mean forecast) (contour; 0.000 01 K Pa21) and
the ensemble spread increment (3D EPS spread 2 2D EPS spread) of specific humidity (color; kg kg21) at the
(a) 18-, (b) 24-, (c) 30-, and (d) 36-h forecast, initiated from 0000 UTC 10 Feb 2019 (a cold-season case).
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(iv) The improvement is found to be greater in lower levels
and surface than upper levels. It is probably due to the
fact that near surface variables are normally more un-
der-dispersive than upper air variables in an ensemble
(Du et al. 2018), providing more room to be improved
in lower levels than in upper levels.

(v) The increment of ensemble spread from the 2D to 3D
rescaling-factor based IC perturbation is realized likely
through convective instability rather than baroclinic in-
stability. This explains why the forecast improvement is
more in the summer month (stronger convective insta-
bility) than in the winter month. This could also explain
why the improvement decreases with the increase of
forecast length because convective instability is a fast-
growing mode and becomes saturated quickly with time.
This result is preliminary and needs to be further stud-
ied because it is based on only one variable 850-hPa spe-
cific humidity. If ensemble spread growth is indeed
more sensitive to convective instability than baroclinic
instability in a storm-scale EPS of short-range forecasts,
IC perturbation should be designed to target the struc-
ture of convective instability to have a more effective
ensemble of forecasts. This is different from designing a

synoptic-scale and global EPS which IC perturbation
targets more on baroclinic instability. On a negative side
of this result is that retaining or further increasing en-
semble spread beyond a certain forecast length could be
more challenging for a storm-scale EPS than a synoptic-
scale global EPS.

This study recommends that a 3D rescaling mask should be
used to replace a commonly used 2D one in current opera-
tional EPSs. It is important for shorter time range and near
surface weather element forecasts, on which are particularly
focused by storm-scale ensembles. Storm-scale EPS has been
proven to be useful for high impact weather events (Roberts
et al. 2020). There is a side benefit of this 3D rescaling mask
for data assimilation. Being more representative to true analy-
sis uncertainty, 3D rescaled IC perturbations could also be
more useful in ensemble-conventional hybrid data assimila-
tion such as ensemble Kaman filter (EnKF; Zhou et al. 2017).
Computationally, the calculation of 3D rescaling factor costs
almost nothing and can be done instantaneously in a super-
computer. The rescaling factor [Eq. (1)] and new perturbation
[Eq. (2)] are calculated only once at model’s initial time for
each forecast cycle. The only difference between the 2D and

FIG. 20. Convective instability (derived from the 3D EPS’s ensemble mean forecast) (contour; 0.00001 K m21) and
the ensemble spread increment (3D EPS spread 2 2D EPS spread) of 850-hPa specific humidity (color; kg kg21) at
the (a) 18-, (b) 24-, (c) 30-, and (d) 36-h forecast, initiated from 0000 UTC 10 Feb 2019 (a cold-season case).
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FIG. 21. Same baroclinic instability as in Fig. 19, but for the warm-season case (0000 UTC 10 Jul 2018).

FIG. 22. Same convective instability as in Fig. 20, but for the warm-season case (0000 UTC 10 Jul 2018).
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3D rescaling factor is that the former is calculated at one
level, while the latter is calculated at all model levels. In other
words, the extra computing time for the 3D rescaling factor
can be practically neglected. Finally, a possible pitfall of this
new 3D rescaling mask is that it could lead to over-dispersion
of ensemble spread if an original 2D rescaling-based EPS has
already an adequate spread–skill relation. However, this situ-
ation should occur rarely because almost all current EPSs in
operation are underdispersive including the GRAPES EPS of
this study. Theoretically, an EPS should not be overdisper-
sive if a model’s uncertainty sources are not fully sampled in
a perturbation method. Spurious ensemble spread only oc-
curs when a perturbation method is not well designed or
tuned like the ad hoc multimodel method, where a right an-
swer could stem from a wrong reason. Therefore, how to in-
crease diversity among ensemble members is still a main
task of EPS design by improving perturbation methods now-
adays (Du et al. 2018). The 3D rescaling mask demonstrated
in this study is a low-hanging fruit to improve ensemble
diversity.
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